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Two-Slit Diffraction Pattern for Gaussian Wave
Packets

Antonio Zecca1

Received July 20, 1998

The complete prediction of diffraction for electrons passing through one or two
slits is obtained from the pure wave propagation governed by the SchroÈ dinger
equation. By the further assumption of electromagnetic interaction between
electrons and slits it is shown that, as already predicted by stochastic
electrodynamics with spin, there exist lateral maxima on the diffraction pattern
corresponding to the edges of the slits.

1. INTRODUCTION

The two-slit diffraction problem is a point where the predictions of

quantum mechanics (QM) differ from those of classical mechanics. The

diffraction pattern of particles through two slits is explained in an elementary

way in QM by taking the absolute square of the sum (superposition) of

probability amplitudes (pure states) associated with the slits (Feynman and

Hibbs, 1965). This distinguishing property of the superposition principle in
QM makes it possible to have pure superpositions of pure states, while in

classical mechanics the only superpositions of pure states are statistical mix-

tures of them (see, e.g., Varadarajan, 1968; Zecca, 1981).

It is of some interest to have a treatment of the diffraction problem also

for wave packets. In this present paper the case of incoming Gaussian wave
packets is considered in the two-dimensional case. The considerations are

developed by assuming the general mathematical scheme defined in a previous

paper in the case of a single slit (Zecca and Cavalleri, 1997). At a first

stage electromagnetic and spin interactions between electrons and slits are

neglected. The time evolution of the wave packet after the slits is determined
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by a ª truncationº assumption on the wave packet when passing through the

slits. This gives the correct results, as is evident from special limiting situations

that are treated separately. The results are in a form that easily generalizes
to the n-slit case.

Recently (Zecca and Cavalleri, 1997), the diffraction pattern through a

slit has been explained also in the context of a new stochastic electrodynamics

(SED) with spin (Cavalleri, 1997). In the case of a beam of electrons that is

narrow with respect to the aperture of the slits it has been found that the

theory predicts three spots. The central spot corresponds to no deviation and
is the one that has a QM counterpart. The other two are a pure SED-plus-

spin effect and cannot be explained by the mentioned quantum mechanical

description without interaction.

The last part of the paper is developed according to the idea that the

lateral spots found in the SED-plus-spin context indeed have an explanation

also from the QM point of view. Under the assumption of a conducting
barrier the effect of the interaction of the electron with its image charges is

considered. It is assumed that the diffraction pattern is the result of a diffracted

and of a scattered wave packet. The diffracted wave packet corresponds to

the one given in the absence of interaction, while the other packet, which is

scattered by the interaction, is treated in the Born approximation. The results
show qualitatively the existence of the lateral spots. The inclusion of the spin

of the electron in the evaluation of the scattering effect gives the same

qualitative results. The quantitative relevance of the spots seems, however,

to be not decidable in the context of the given approximations. Therefore an

experimental verification of the mentioned effect is required.

2. TWO-SLIT DIFFRACTION FROM SCHROÈ DINGER QM

The two-slit diffraction problem is considered in the two-dimensional

case and the region S that is inaccessible to the particle is assumed to be the

subset of the (x, y) plane given by

S 5 {(x,y): | x | , a, y P ( 2 ` , 2 d8 2 b8] ø [ 2 d8, d ] ø [d 1 b, ` )} (1)

where a, b, b8, d, d8 are positive real numbers. The apertures of the slits are

therefore b and b8 (b, b8 ¿ 1 in the case of diffraction) and both have depth

2a. The motion of a SchroÈ dinger particle moving in that context can be

sketched [as for the one-slit diffraction (Zecca and Cavalleri 1997) or as for

any other plane motion with an inaccessible region] as a motion which is
free outside S and subjected to the boundary condition of an infinite potential

barrier in the region S. Any other kind of interaction is neglected. A coherent

mathematical formulation of the SchroÈ dinger operator requires a treatment

in terms of weak solutions. This has already been done (Zecca and Cavalleri,
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1997) for the one-slit diffraction problem and the procedure and results extend

to the present case without modifications. As a consequence, the solution of

the SchroÈ dinger equation, which in general could not be separated in terms
of the x and y dependences, can be approximated by factorized solutions

that can be chosen to reasonably develop the calculations. Accordingly, the

diffraction pattern of a beam of particles can be studied in the following way.

We consider a free-particle Gaussian wave packet coming from the remote

x region and with probability distribution centered on a point moving with

velocity v0x 5 " k0x /m on an axis parallel to the x axis ( y 5 y0):

c (x, y, t) 5 c (x, t) f ( y, t) (2)

with

c (x, t)

5 a 1/2 H exp F 2
a 2

2

(x 2 x0 2 " k0x t/m)2

1 1 i " a 2t/m
1 ik0x(x 2 x0) 2 i " k2

0xt/2m G J
3 [ p 1/2(1 1 i " a 2t/m)] 2 1/2 (3)

and

f ( y, t) 5 F b
p 1/2(1 1 i " b 2t/m) G

1/2

exp F 2
b 2

2

( y 2 y0)
2

1 1 i " b 2t/m G (4)

To describe the motion of the wave packet after the slit, we assume that the

part of the wave function c (x, y, t) relative to the points (x, y) such that

2 d8 , y , d or y . d 1 b or y , 2 d8 2 b8 are reflected toward the negative
x region by the barrier S because no tunneling effect is possible with an

infinite potential barrier.

We therefore assume that the wave packet just after the slit, at a time

taken as initial t 5 0, is

c I(x, y, 0) 5 c a(x, 0) x I( y) f ( y, 0) (5)

where c a(x, 0) is the function c (x, 0) in Eq. (3) with x0 5 a, and x I( y) is

the characteristic function of the two-interval set I 5 [d, d 1 b] ø [ 2 d8 2 b8,
2 d8]. [With respect to the normalization, it is worth noticing that the wave
function having norm 1 consists of the part given by (5) and the part of the

wave packet reflected by the barrier. Therefore, the ª initial stateº (5) is

implicitly assumed to evolve after the slits with constant norm that is less

than 1.] Since the initial wave function is separated in the x and y dependences

and the particle moves freely after the slits, one has

c I(x, y, t) 5 c a(x, t) f I( y, t) (6)
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where c a(x, t) is again the function in Eq. (3) with x0 5 a, while

f I( y, t) 5
1

2 "
b 1/2

p 5/4 # 5

exp F i

" 1 pyy 2
p2

yt

2m 2 G dpy

3 # I

exp F 2
i

"
py j 2

b 2

2
( j 2 y0)

2 G d j (7)

[We remark that Eq. (7) is in a form which could be immediatly generalized

to the n-slit case.] The double integral in (7) can be performed by first

integrating over the variable py ,

f I 5 F m b
2 p 3/2i " t G

1/2

exp F y2 im

2 " t
2 y2

0
b 2

2 G
3 # I

exp F 2 j 2 1 b 2

2
2

im

2 " t 2 1 j ( y0 b 2 2
imy

2 " t 2 G d j (8)

and then over j so to obtain

f I ( y, t) 5
1

2 F m b
p 1/2(m 1 it " b 2) G

1/2

exp F 2
m b 2

2(m 1 it " b 2)
( y 2 y0)

2 G
3 H erf F im( y 1 d8) 2 b 2 " t( y0 1 d8)

(2 " t( " t b 2 2 im))1/2 G
2 erf F im( y 1 d8 1 b8) 2 b 2 " t( y0 1 d8 1 b8)

(2 " t( " t b 2 2 im))1/2 G
1 erf F im( y 2 d 2 b) 2 b 2 " t( y0 2 d 2 b)

(2 " t( " t b 2 2 im))1/2 G
2 erf F im( y 2 d ) 2 b 2 " t( y0 2 d )

(2 " t( " t b 2 2 im))1/2 G J (9)

where erf z 5 2 p 2 1/2 * z
0 exp( 2 t2) dt is the error function (Abramovitz and

Stegun 1960).

3. TWO-SLIT QM DIFFRACTION: LIMITING CASES

3.1. Suppose the incoming wave packet is narrow with respect to

both slits:
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D y 5
1

b ! 2
¿ b, b8 (10)

Then from the definition of the erf function and by considering the dominant

term for b very large in the arguments of the erf function, one gets from Eq. (9)

f I f *I >
p 2 3/2 b m

(m2 1 " 2t2 b 4)1/2 exp F 2
m2 b 2( y 2 y0)

2

m2 1 " 2t2 b 4 G
3 H #

( y0 1 b8 1 d8) b / = 2

(y0 1 d8) b / = 2

exp( 2 t2) dt

1 #
( y0 2 d) b / = 2

(y0 2 d 2 b) b / = 2

exp( 2 t2) dt J
2

(11)

From this expression it is evident that, since b is large and b, b8 ¿ 1, the

contribution of the sum of the integrals becomes rapidly negligible unless

y0 P I. Thus, this situation essentially describes an incident wave packet that

passes through the slits with its configuration undisturbed or is reflected

toward the negative x axis according to whether the incoming y-probability

distribution is centered with regard to one of the slits or not.

3.2. Suppose now the incoming wave packet is very undetermined in

the y-position probability distribution

D y 5
1

b ! 2
À b, b8 (12)

By setting b 2 5 0 in Eq. (8) and neglecting for large y values the term 2 im/

2 " t, we calculate the integral and find

2 " t

my H exp F 2
imy

" t 1 d 1
b

2 2 G sin
bmy

2t "

1 exp F imy

" t 1 d8 1
b8

2 2 G sin
b8my

2t " J (13)

By assuming the geometrical configuration to be such that

d 5 d8, b 5 b8 (14)
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from (8), (13), and the given approximations finds

f I( y, t) f *I ( y, t) 5
2b2 b m

p 3/2t "
exp[ 2 b 2y2

0]
sin2(bmy/2t " )

(bmy/2t " )2

3 cos2 F my

t " 1 d 1
b

2 2 G (15)

As expected, this probability has is maximum at y0 5 0. If now the separation

of the slits is of the order of the slit aperture (d > b), the factor containing

the cosine is practically negligible and the expression (15) essentially gives

the elementary diffraction pattern of a plane wave through a single slit. If
the separation of the slits is much greater than the aperture of the slit (d À

b), expression (15) represents high-frequency pattern modulated by the men-

tioned elementary diffraction pattern.

4. QM DIFFRACTION: CONSIDERING ELECTROMAGNETIC
INTERACTIONS

The diffraction patterns of the previous section are evidence of the pure

wave propagation description of the particle as implied by the SchroÈ dinger
equation with boundaries. A more detailed description can be done by taking

into account the relevance of possible interactions of the particle with the slits.

In the case of a single slit located at x 5 0 with edges at y 5 6 b/2 and

of a conducting wall, the interaction of the incoming particle with its image

charges on the slit seems to be the more important one. At a first approximation

one has a Coulomb scattering of the incident electron by two centers located
at x 5 0, y 5 6 b/2. The outgoing wave, which can be approximated in our

scheme as fk exp(ikr)/r > fk exp(ikx)/x (for large, positive x) is characterized

in the Born approximation by a scattering amplitude of the form (see, e.g.,

Merzbacher, 1970)

fkx > 2
me2

2 " 2k2
x F 1

sin2( u /2)
1

1

sin2( u 8/2) G (16)

> 2
me2

2 " 2k2
x F 4x2

( y 2 b/2)2 1
4x2

( y 1 b/2)2 G (17)

where x is the position of the screen and we have used the approximations
sin u /2 > ( y 2 b/2)/2x and sin u 8/2 > ( y 1 b/2)/2x. In case of two slits

with geometrical configuration given by Eqs. (1) and (14) the interaction is

with four scattering centers so that the outgoing scattered spherical wave

packet can be roughly approximated by (Metzbacher, 1970)
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c out(x, y, t) > 2
me2

2 " 2k2
0x F 4x2

( y 2 b 2 d )2 1
4x2

( y 2 b)2 1
4x2

( y 1 d )2 1
4x2

( y 1 b 1 d )2 G
3

1

x
exp 1 i

" k2
0x

2m
t 2 c a(x 2 v0xt, 0) f ( y, 0) x I ( y) (18)

Accordingly, after the slits, we assume that the wave function is given by

the superposition

C (x, y, t) > c I(x, y, t) 1 c out(x, y, t) (19)

with c I and c out given by (6) and (18), respectively. The assumption is that

the wave function is partly scattered and partly diffracted by the slits (this

last term substitutes the transmitted wave packet that would occur in the pure

scattering case). By taking x, t constant in Eq. (19) the expression | C (x, y) | 2

gives the diffraction pattern on the screen located at x. The effect of the

considered interaction is that of adding maxima to the pure diffraction pattern

of the spectrum corresponding to the edges of the slits. Such maxima, which

take an infinite value due to the approximation method employed, always

should be present, but are more evident in the case of a narrow incoming

beam ( D y ¿ 1). It is of interest to see the quantitative order of this effect.
By comparing the leading coefficient of (18) with, e.g., that of (5) ( D y À

1) one has, for sufficiently large t,

| c out | 2

| c I | 2
> e4

E2

x2y2

( y 2 b)4

m

"
1

t
> 10 2 14 x2y2

( y 2 b)4

1

t
(20)

where Gaussian units have been used for an energy E corresponding to 1
eV. The divergence 1/( y 2 b)4 can therefore compensate, in principle, the

very small value of the ratio. On the other hand, as mentioned, such a

divergence is a consequence of the assumed Born approximation and even

one takes the scattering contribution to be not relevant to the final diffraction

pattern, it is not possible to decide this exactly in the context of the previous

treatment. [One reaches the same conclusion in the case D y ¿ 1, that is, by
using (11) in estimating the ratio (20).] To be more precise, one should also

consider the repulsive magnetic interaction of the current given by the electron

beam with its ª imageº currents of opposite sign on the slits. At least qualita-

tively, this tends to depress the values, if relevant, of the mentioned maxima

corresponding to the edges of the slits and to reinforce the diffraction pattern

corresponding to the central position of the slits.
Finally, a treatment that consider the spin of the electron does not change

the prevous qualitative results because also in that case one would have a

differential cross section with the same leading coefficient and behavior as

that derived from (16) and (17) (Bethe and Salpeter, 1977, Chapter 15). It
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would be of interest to decide experimentally the existence of the above

effects.
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